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Abstract The lateral stability of reaction fronts in simple autocatalytic models with the components car-
rying various charges is investigated when the system is exposed to an inhomogeneous electric field parallel
to the direction of propagation. The enhanced migrational flux of the reactant destabilizes the planar front
giving rise to a cellular structure because the electric field strength is greater on the reactant side of the
reaction front. The onset of instability depends not only on the charge difference between the reactant
and the autocatalyst but also on the variation of specific conductance in the course of the reaction, which
results in a difference in electric field strength on the opposite sides of the reaction front.

Keywords Autocatalytic reaction front · Lateral instability · Migration-driven instability

1 Introduction

In autocatalysis the positive feedback results from the chemical nature of one of the products as it increases
the rate of its own production. From the interaction between autocatalytic reactions and transport pro-
cesses a chemical front may arise, which can be characterized by the distribution of concentrations and
the velocity of propagation [1,2]. The reaction front, which spatially separates the unreacted chemicals
from the products, is the thin interface where the autocatalytic reaction takes place at a significant rate. It
generally retains the symmetry of the local initiation in a homogeneous reactant mixture in the absence
of convection; however, under certain conditions concentration gradients transverse to the direction of
propagation may arise leading to the formation of a cellular pattern from the ever-present microscopic
noise [3,4]. This phenomenon is called the lateral instability of reaction fronts.

Theoretical studies have shown that planar reaction–diffusion fronts may lose stability when the diffu-
sion of the reactant is dominant over that of the autocatalyst through the reaction zone [5–8]. It has also
been shown that a strong feedback is necessary; in single-step quadratic autocatalysis planar fronts remain
stable. In aqueous solutions the diffusion coefficients of components are hardly tunable, which is why the
selective slowing down of the autocatalyst is achieved in experimental systems by binding it into an immo-
bile species [9–12]. The reversible binding decreases the concentration of the free autocatalyst behind the
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Table 1 Investigated
models

Reaction model Reaction rate zB − zA

1 A− → B + C+ + D2− kccAc2
B 1

2 A− → B+ + C2− kccAc2
B 2

3 A− → B2+ + C2− + D− kccAc2
B 3

4 A− → B− + C+ + D− kccAc2
B 0

5 A− → B+ + C2− kqcAcB 2

front and hence its flux across the reaction zone [13]. The same effect may be observed if the autocatalyst
slowly decays following its production by forming an inert product [14].

In our experimental studies the autocatalytic chlorite ion oxidation of tetrathionate ion has been in
focus, where a constant external electric field parallel to the direction of propagation either enhances the
mixing of the reacting species or tends to separate them via the arising ionic migration depending on the
orientation of the field [15–17]. In the latter scenario less autocatalyst is produced in the reaction leading
to a further decrease in its concentration gradient across the reaction zone; hence cellular fronts may be
observed at a smaller binding than in the absence of an electric field. If the reaction front is exposed to
an inhomogeneous electric field, i.e., no conducting salt is added to the mixture, the electric field strength
will be greater ahead of the reaction front because the specific conductance of the solution increases in the
course of the chlorite–tetrathionate reaction [18]. Planar fronts now lose stability when the field orientation
induces migration towards the reaction zone increasing the concentration gradient of the autocatalyst with
respect to that of the reactant; lateral instability therefore arises, even though diffusion itself would stabilize
the planar symmetry. We have shown theoretically and experimentally that in the chlorite–tetrathionate
reaction it is the enhanced migrational flux of the reactants with respect to that of the autocatalyst that
drives the instability due to the greater electric field residing ahead of the reaction front [19].

In this work we investigate the stability of reaction fronts existing in prototype models of simple autocat-
alytic systems. We place various charges on the reacting species and include inert ionic products to account
for the increase in specific conductance in the reaction. In the constructed reaction–diffusion-migration
systems we find the planar-front solutions upon varying the external electric field applied parallel to the
direction of propagation. We then investigate the stability of the one-dimensional solutions to transverse
perturbations by carrying out a linear stability analysis. By locating the onset of lateral instability and
comparing the results of the various models, we will identify the key parameters that characterize the
migration-driven instability arising in these systems.

2 Reaction–diffusion-migration model

We have investigated the lateral stability of reaction fronts in cubic autocatalysis with various charges
on the species (models 1–4 in Table 1) and in quadratic autocatalysis (model 5 in Table 1), when the
two-dimensional systems are exposed to an external electric field parallel to the direction of propagation.
In all systems the reactant anion A− is converted into the autocatalyst B, where the byproducts C and D
ensure the increase of conductivity in the course of the reaction. A positively charged inert counter ion is
also present in the system to account for the charge balance.

These reaction models in the electric field are described mathematically with a general balance equation
in the from of
∂Ci

∂t
= Di∇2Ci + ziFDi

RT
∇ (Ci∇�)+ νiR, (1)

where Ci is the concentration and zi is the charge of the ith component having a diffusion coefficient Di

and a stoichiometric coefficient νi, R is the local rate of reaction and � represents the electric potential.
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The first term on the right-hand side of Eq. 1 describes diffusion, the second expresses the migration in an
inhomogeneous electric field and the third arises from the kinetics of the chemical reaction.

To characterize the systems completely, we must consider the charge balance

∂Q
∂t

=
n∑

i=1

(
ziFDi∇2Ci + z2

i F2Di

RT
∇ (Ci∇�)

)
= 0, (2)

where the number of species n = 4−5 depending on the model. In Eq. 2 we also state that no macroscopic
charge separation occurs in the models, i.e., Q = 0, which is the general case for a real chemical-system
run in an aqueous solution.

Upon the introduction of dimensionless parameters, Eqs. 1 and 2 lead to

∂ci

∂τ
= δi∇2ci + ziδi∇ (ci∇ψ)+ νir, (3)

0 =
n∑

i=1

(
ziδi∇2ci + z2

i δi∇ (ci∇ψ)
)

, (4)

where the dimensionless concentration ci = Ci/C1,0 is scaled to the initial concentration of the reactant
A far ahead of the front, δi = Di/D1 represents the relative diffusivity and the dimensionless potential
is given as ψ = �F/(RT). For cubic autocatalysis (models 1–4 in Table 1) the reaction rate r = c1c2

2, the

dimensionless time scale τ = kcC2
1,0t and dimensionless length scales ξ = x

√
kcC2

1,0/D1, η = y
√

kcC2
1,0/D1.

For quadratic autocatalysis (model 5 in Table 1) r = c1c2, the dimensionless time scale τ = kqC1,0t and
dimensionless length scales ξ = x

√
kqC1,0/D1, η = y

√
kqC1,0/D1, redefining ∇ as (∂/∂ξ , ∂/∂η)T .

In the spatially extended system we orient the ξ -axis in the direction of propagation and define bound-
ary conditions that are realistic for experimental setups. Far ahead and behind the front, i.e., as |ξ | → ∞,
the concentration gradients vanish, which does not mean that the flux tends to zero because of the ionic
migration under the electric field. The potential gradient at the limits is driven by the constant current
density J, where ξ corresponds to the direction of the front propagation

∂ψ

∂ξ

∣∣∣∣±∞
= −j∑n

i=1 z2
i δici,±∞

, (5)

where the dimensionless current density is given as j = J/(F
√

kcC4
1,0D1) for cubic autocatalysis (models

1–4 in Table 1) and j = J/(F
√

kqC3
1,0D1) for quadratic autocatalysis (model 5 in Table 1), and the denom-

inator is essentially the specific conductance at the appropriate boundary (κ±∞). The concentrations are
also given at ξ → as c1 = cn = 1 and c2 = · · · = cn−1 = 0, corresponding to the initial reactant solution
containing only A and the inert counter ion.

The two-dimensional system in Eqs. 3 and 4 has been solved on a rectangular grid of 201×401 points
with spacing h = 0.5 using the standard nine-point formula for the Laplacian and an explicit Euler method
with 
τ = 10−3. Following an iteration step for Eq. 3, the potential field has been updated by applying a
relaxation method to Eq. 4. For initial conditions, a local perturbation of the planar front is introduced by
randomly displacing the rows by one grid unit in the direction of propagation. During the integrations the
entire grid is continuously shifted forward to keep the reaction front centered in the grid.

3 Planar reaction front solution

Upon solving for planar fronts all gradients in the η-direction disappear, so Eqs. 3 and 4 describe a one-
dimensional problem. We may introduce a traveling coordinate ζ = ξ − uτ , where u is the velocity of front
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propagation, and hence transform Eqs. 3 and 4 into ordinary differential equations as

0 = δi
d2ci

dζ 2 + u
dci

dζ
+ ziδi

(
dci

dζ
dψ
dζ

+ ci
d2ψ

dζ 2

)
+ νir, (6)

0 =
n∑

i=1

[
ziδi

d2ci

dζ 2 + z2
i δi

(
dci

dζ
dψ
dζ

+ ci
d2ψ

dζ 2

)]
. (7)

The concentrations far behind the front, i.e., as ζ → −∞, can be obtained from the integral of Eq. 6

0 =
[
δi

dci

dζ

]+∞

−∞
+ [uci]

+∞−∞ +
[

ziδici
dψ
dζ

]+∞

−∞
+ νi

∫ +∞

−∞
r dζ , (8)

in which the first term vanishes for each i. Since the reactant is consumed in the course of the reaction,
c1 = 0 at ζ = −∞, yielding an expression for the integral of the reaction rate from Eq. 8 for i = 1 as
∫ +∞

−∞
r dζ = − 1

ν1

(
u − z1δ1

dψ
dζ

∣∣∣∣+∞

)
= u − dψ

dζ

∣∣∣∣+∞
. (9)

The substitution of Eq. 9 in Eq. 8 for i = 2, . . . , n − 1 results in a set of nonlinear equations for c2, . . . , cn−1
at ζ = −∞, which can readily be solved for a given j and u. The concentration of the counter ion at the
limit is then obtained from the charge balance

cn = − 1
zn

n−1∑

i=1

zici. (10)

The functional form of the concentration profiles close to the limits |ζ | → ∞ can be determined by
investigating Eq. 6 in the phase space (c1, . . . , cn−1, v1, . . . , vn−1), where the new variables are defined as
vi = dci/dζ . The boundary conditions of Eq. 6 appear as steady states in the phase space and the concen-
tration profiles as the heteroclinic orbit connecting them. The governing equations comprise the definition
of the new variables and the rearranged Eq. 6 with the potential gradient given from

j = −
n∑

i=1

(
ziδi

dci

dζ
+ z2

i δici
dψ
dζ

)
, (11)

an integral of Eq. 6, since the latter is essentially 0 = −dj/dζ . The concentration of the counter ion cn is
eliminated by applying the charge balance via Eq. 10.

The linear stability analysis at the steady state corresponding to ζ = −∞ yields a single physically
acceptable positive eigenvalue; hence the trajectory is approximated as
⎛

⎜⎝
c1
...

cn−1

⎞

⎟⎠ =
⎛

⎜⎝
0
...

cn−1,−∞

⎞

⎟⎠ + e+ eλ+ ζ , (12)

where λ+ is the positive eigenvalue and e+ is the eigenvector associated with it.
There are (n − 1) negative eigenvalues at the steady state representing ζ = ∞; hence the trajectory may

be formulated as
⎛

⎜⎝
c1
...

cn−1

⎞

⎟⎠ =
⎛

⎜⎝
1
...
0

⎞

⎟⎠ +
n−1∑

i=1

Ci e−,i eλ−,i ζ , (13)

where λ−,i is the negative eigenvalue and e−,i is the appropriate eigenvector.
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Equations 6 and 7 are solved by a relaxation method on an equally spaced grid with 501–701 points
depending on the model with grid spacing h = 0.1. For the discretization we have used the forward differ-
ence formula for the first derivative in the second term of Eq. 6 and the centered difference for the rest
and the standard three-point formula for the Laplacian to obtain
dci,j

dτ
= δi

ci,j+1 − 2ci,j + ci,j−1

h2 + u
ci,j+1 − ci,j

2h

+ ziδi

(
(ci,j+1 − ci,j−1)(ψj+1 − ψj−1)

4h2 + c̄i,j
ψj+1 − 2ψj + ψj−1

h2

)
+ νirj (14)

0 =
n∑

i=1

ziδi
ci,j+1 − 2ci,j + ci,j−1

h2

+
n∑

i=1

z2
i δi

(
(ci,j+1 − ci,j−1)(ψj+1 − ψj−1)

4h2 + c̄i,j
ψj+1 − 2ψj + ψj−1

h2

)
(15)

for the jth grid point, where c̄i,j = (ci,j+1 + ci,j−1 + 2ci,j)/4 is introduced for improved numerical stability.
The boundary condition on the left is taken from Eq. 12 resulting in
(

dci

dζ

)

j
= λ+ (ci,j − ci,−∞), (16)

while that on the right is derived from Eq. 13 leading to
⎛

⎜⎜⎜⎜⎜⎝

dc1

dζ
...

dcn

dζ

⎞

⎟⎟⎟⎟⎟⎠

j

= M

⎛

⎜⎝
c1,j

...
cn−1,j

⎞

⎟⎠ − v, (17)

where M is an n by (n − 1) matrix with the last row being a linear combination of the rest due to the charge
balance. The matrix M and the vector v contain the eigenvalues and the components of the eigenvectors
from Eq. 13. The boundary condition for the discretized potential is then obtained by substituting Eqs. 16
and 17, respectively, in Eq. 11.

Equation 15 with the boundary conditions represents a homogeneous set of linear equations for ψj with
a tridiagonal matrix that can be easily solved for a given set of concentration values provided φ0 = 0. The
ODE in Eq. 6 with the boundary conditions is then solved with the CVODE package [20] to reach the
time-independent solution, i.e., dci,j/dτ → 0. During the integration the velocity of front propagation and
the concentration at ζ = −∞ are regularly adjusted according to Eq. 9 to a value for velocity within a
preset error of 10−7.

4 Linear stability analysis

On determining the stability of planar reaction fronts, we introduce a small spatial perturbation transverse
to the direction of propagation, hence the front position becomes ζp(η, τ) = ∑

k�k(η, τ), where k is the
wavenumber associated with the perturbation. The concentration and the potential field can therefore be
written as

ci(ζ , η, τ) = ci,0(ζ )+
∞∑

k=1

ci,1,k(ζ )�k(η, τ) = ci,0(ζ )+
∞∑

k=1

ci,1,k(ζ )e
ωτ+ikη, (18)

ψ(ζ , η, τ) = ψ0(ζ )+
∞∑

k=1

ψ1,k(ζ )�k(η, τ) = ψ0(ζ )+
∞∑

k=1

ψ1,k(ζ )e
ωτ+ikη, (19)
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where ci,0 and ψi,0 represent the planar front, i.e., the solution of Eqs. 6 and 7. The perturbation is localized
to the reaction front, where r is significant; therefore we require that ci,1,k → 0 and ψ1,k → 0 as |ζ | → ∞.
In the linear stability analysis having substituted Eqs. 18 and 19 in Eqs. 3 and 4 in the traveling-coordinate
system, we only consider first-order perturbations; the spatial modes then decouple and we obtain

ωci,1,k = δi
d2ci,1,k

dζ 2 + u
dci,1,k

dζ
+ ziδi

(
dci,0

dζ
dψ1,k

dζ
+ dci,1,k

dζ
dψ0

dζ

+ ci,1,k
d2ψ0

dζ 2 + ci,0
d2ψ1,k

dζ 2 − k2ci,0ψ1,k

)
− δik2ci,1,k + νiJk, (20)

0 =
n∑

i=1

[
ziδi

(
d2ci,1,k

dζ 2 − k2ci,1,k

)
+ z2

i δi

(
dci,0

dζ
dψ1,k

dζ

+dci,1,k

dζ
dψ0

dζ
+ ci,1,k

d2ψ0

dζ 2 + ci,0
d2ψ1,k

dζ 2 − k2ci,0ψ1,k

)]
(21)

for the terms first order with respect to�k, where Jk = ∑
i=1(∂r/∂ci)0 ci,1,k, and ω represents the temporal

eigenvalue. In case ω > 0 for some value of k, the perturbation grows exponentially in time, identifying an
unstable planar front. Equations 20 and 21 may be rewritten in matrix form as

ω

⎛

⎜⎜⎜⎝

1 . . . 0 0
...

. . .
...

...
0 . . . 1 0
0 . . . 0 0

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

c1,1,k
...

cn,1,k
ψ1,k

⎞

⎟⎟⎟⎠ = M̂

⎛

⎜⎜⎜⎝

c1,1,k
...

cn,1,k
ψ1,k

⎞

⎟⎟⎟⎠ , (22)

where the matrix operator M̂ only depends on ci,0, ψ0, and k.
For the calculation of the eigenvalue ω, Eqs. 20 and 21 are first discretized in the same fashion as

Eqs. 6 and 7, which transforms M̂ into a regular banded matrix with a bandwidth of 2n+1. The generalized
eigensystem itself has then been solved with the DGGEV routine from the LAPACK package [21] to find
the eigenvalues, among which the one with the largest real part determines the stability of the solution
with respect to the selected spatial mode. For a given planar front the procedure is repeated to construct
the dispersion curve ω = F(k) by plotting the appropriate distinct eigenvalue as a function of the spatial
wavenumber.

We take equal diffusivities for all components, i.e., δi = 1, in which case the systems are diffusionally
stable.

5 Results and discussion

In the absence of an external electric field, i.e., j = 0, the investigated models support a reaction front
with constant velocity of propagation, which is represented with stationary concentration profiles in the
moving-coordinate system. While the concentrations ahead of the fronts are defined by the initial state and
hence are independent of the electric field, the concentration of the products behind the front varies with
the strength of the applied external field. Figure 1 shows the concentration profiles developed for model 1
in Table 1 in a positive electric field (j = 0.6). The negatively charged reactants migrate backward into the
reactant zone, locally enhancing the rate of reaction which leads to a greater autocatalyst build-up behind
the front: the final concentration of B increases to 1.33 from 1 observed in the absence of electric field. The
inert products of the reaction have different charges so that their concentrations are no longer the same as
that of the autocatalyst. The positively charged C migrates forward and therefore reaches an even greater
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Fig. 1 Concentration profiles for model 1 in Table
1 at j = 0.6. The reaction front is located at ζ = 0,
where the rate of conversion is at maximum. The con-
centration of species from top to bottom at ζ = −10:
C+, B, D2−, K+, and A−
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Fig. 2 Variation of electric field strength ε = −dψ/
dζ across the front in Fig. 1

concentration level at 1.48, while the negatively charged D migrates backward yielding a smaller increase
in its concentration (1.11).

The resultant electric field, presented in Fig. 2, reveals the common feature of the selected models; not
only a liquid junction potential exists at the reaction front but also a significantly greater field strength
is necessary ahead of the front in order to maintain the constant current density because the specific
conductance of the system increases in the course of the reaction.

A positive electric field creates migrational fluxes that increase the overlap of reactant A and auto-
catalyst B at the reaction zone for the investigated systems with the exception of model 4 in Table 1.
The resultant enhanced local rate of reaction in turn leads to an increased velocity of front propagation
(cf. Eq. 9). In the opposite orientation the migrational fluxes point away from the reaction zone, decreasing
the overlap of the reacting components leading to smaller velocity of front propagation as shown in Fig. 3.
There also exists a current-density limit beyond which no reaction front can be sustained and the systems
evolve into electrophoretic fronts propagating independently of each other. In model 4 both reactant A
and autocatalyst B—having the same charge—migrate backward under a positive electric field, in which
case a small increase in overlap may be observed as the reactant has a greater drift velocity due to the
stronger electric field residing ahead of the front. In a negative field, although there is a decrease in the local
reaction rate, the velocity of propagation increases because both A and B migrate forward. The former
has greater drift velocity, so that reaction fronts are expected to extinguish at a strong negative field.

The investigated planar reaction fronts are stable in the absence of an electric field. In a positive field
the greater migrational flux of reactant A with respect to that of autocatalyst B destabilizes the planar
symmetry of the front and the amplification of the random noise leads to the formation of cellular struc-
tures as shown in Fig. 4. This loss of stability is not observed in model 5, indicating that higher-order
autocatalysis—yielding a pushed front [4]—is a necessary condition for lateral instability similar to the
diffusion-driven case. Planar fronts of model 4 in Table 1 also remain stable in the feasible range of current
densities, whence a charge difference between the reactant and the autocatalyst is also essential to build
up the necessary difference in migrational flux at the reaction zone.

The extent of instability is best characterized with the variation of the dispersion curve as the current
density is increased for a positive electric field. Figure 5 depicts example cases for model 1. All wavenum-
bers have a negative growth-rate coefficient for j = 0 and j = 0.2, indicating that planar fronts are stable,
while for the rest of the current densities planar fronts are unstable because a range of wavenumbers with
a positive growth-rate coefficient appears. The wavenumber of the most unstable mode and the marginal
wavenumber separating the stable and unstable regimes both increase upon increasing the current density.
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Fig. 3 Velocity of propagation of calculated planar
fronts as a function of current density for models 1,
2, and 3 in Table 1

Fig. 4 Gray scale representation of a calcu-
lated front at τ = 140 for model 1 in positive
field with current density j = 5. The light re-
gion corresponds to low, the dark region to
high concentration of autocatalyst B
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Fig. 5 Dispersion curves of planar fronts in model
1 calculated for current densities j = 0.0, 0.2, 0.4,
0.6, 0.8
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Fig. 6 Dispersion curves of planar fronts at current
density j = 0.4 in models 1, 2, and 3 from bottom
to top

Figure 6 illustrates that the degree of instability varies from system to system for a given current density.
The unstable region and the growth-rate coefficient of the most unstable mode increase as the charge
difference between autocatalyst B and reactant A increases. This effect is reflected in the current densities
at the onset of instability, as shown in Table 2, where the slope of the dispersion curves—more precisely
dω/d(k2)—changes its sign at the origin. In models 1 and 2 the specific conductance of the product solution
is three times that of the reactant solution in the absence of external electric field. This ratio changes only
slightly upon introducing the field; hence an approximately three times stronger electric field is created
ahead of the reaction front (cf. Eq. 5). In model 2 the onset of instability occurs at about half the current
density with respect to model 1 because in the former the charge difference between the reactant and the
autocatalyst is double. In model 3 planar fronts lose stability at even smaller current density because not
only the charge difference between the key components increases further but also the product solution
has a five times greater specific conductance with respect to the reactant solution resulting in a five times
stronger field ahead of the front. Hence the ratio of specific conductance and the charge difference together
determine the onset of instability, which may be estimated for the investigated models as

jcr ≈ C
(zB − zA)κ−∞/κ∞

, (23)

where C = 0.9 ± 0.1.
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Table 2 Critical current
density at the onset of
lateral instability

Model 1 2 3

jcr 0.324 0.163 0.056

Although we have worked with only a few models, the results allow us to identify the possibility of
lateral instability in further autocatalytic systems by considering the change in specific conductance during
the reaction and the charges of the key components. Since the enhanced migration of the reactant with
respect to that of the autocatalyst is the driving force, the electric-field strength has to be greater on the
reactant side of the reaction front requiring an increase in specific conductance in the course of the reaction.
The orientation of the electric field will depend on the charges of the species. Best results with relatively
small current density are expected for systems in which the reactant(s) and the autocatalyst have opposite
charges.

6 Conclusion

In this theoretical work we have investigated the interaction between ionic migration caused by an imposed
electric potential gradient and a planar reaction front. For a model system, cubic autocatalysis between
charged species is selected, while the external electric field is applied parallel to the direction of front
propagation. In cubic autocatalysis the positive feedback is sufficiently strong so that the reaction front
is a thin layer where the reactants are converted into the products, the stability of which is determined
by the flux of the key species. Cellular fronts arise when the flux of the reactant through the reaction
front significantly exceeds that of the autocatalyst, in which case transverse waves in the reaction front
profiles develop from the microscopic noise in the system. When diffusion is the key transport process,
the phenomenon is labeled diffusion-driven instability. For reacting components with different charges,
the external electric field parallel to the direction of propagation leads to an additional flux of species due
to ionic migration, which not only alters the velocity of front propagation but also may cause the planar
reaction fronts to become unstable. The results of this work reveal that the onset of instability depends
both on the charge difference between the reacting species and on the increase of specific conductance in
the course of the reaction. The latter is an important characteristic of the front, since it is responsible for
the stronger electric field ahead of the reaction front which selectively increases the flux of the reactant
with respect to that of the autocatalyst, thus leading to the destabilization of the planar symmetry.

The reacting species in this study have equal diffusion coefficients rendering the resultant reaction fronts
diffusively stable. In systems where the charged species diffuse at a different rate, a local electric field builds
up in regions where concentration gradients exist. Migrational flux therefore contributes to mass transport
in general systems, not only in the special case when an external electric field is applied. Hence a proper
description of diffusion-driven front instability accompanying an autocatalytic reaction between charged
species has to include migrational fluxes resulting from the local electric field at the front.
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